Radiation Safety & Health Physics Blog

What’s the Deal with Yucca Mountain?

So, Dr. Zoomie:  what’s the deal with Yucca Mountain?

North Portal of Yucca Mountain

North Portal of Yucca Mountain

In the mid-1990s I was on a technical advisory committee to the organization that was working to find a location for a low-level radioactive waste disposal facility that was to service several states in the Midwest. Even with stringent siting criteria there were a number of locations that would have been acceptable; what stopped the process was that the Midwest Compact decided to pull the plug – changes on the national level made it more attractive to continue using existing sites than to start up a new one. At present, there are a number of sites for the disposal of low-level radioactive waste, but the nation is still struggling to answer a question that many nations have already satisfactorily addressed – where to put the nation’s high-level radioactive waste. This process has recently come up in the news again. This is an important topic – one that warrants more than a single posting – so I’d like to discuss various aspects of the science behind high-level radioactive waste disposal in general, and of Yucca Mountain in particular, over the space of a couple of postings. But first I’d like to start with an overview of where high-level radioactive waste (HLW) comes from and a little bit of history on this topic. So history this week, then we’ll get into the science.

By definition HLW is “highly radioactive material produced as a byproduct of the reactions that occur inside nuclear reactors.” It includes both spent reactor fuel (fuel removed from the reactor because it no longer has enough fissionable U-235 to easily sustain a chain reaction) and waste produced during the reprocessing of spent fuel. HLW can be hot – both thermally and radioactively – and it has to be handled with care. Not only that, but some of the nuclides remain hot for decades to millennia so it has to be kept secure for at least as long as the Pyramids have been standing. There are a lot of factors that enter into storing HLW safely – too many to go into here, but I’ll try to cover them in future postings as well.

All nuclear reactors produce HLW during their operation – a typical reactor will be refueled every year or two; during a refueling outage much of the fuel is shuffled around in the core and the remainder is removed. In other nations the spent fuel is reprocessed – plutonium that was produced during reactor operations is removed and residual fissionable U-235 can be removed as well; whatever’s left over is disposed of as HLW. Until recently plans were to dispose of HLW beneath Yucca Mountain, located in the Nevada desert, but those plans have been on hold for several years. Here’s what happened.

In 1982, realizing that the US needed a long-term plan for high-level waste, the Nuclear Waste Policy Act was enacted into law. This law tasked the Department of Energy (DOE) with developing a repository, the Environmental Protection Agency was instructed to develop environmental safety standards and to evaluate a repository’s safety, and the Nuclear Regulatory Agency was told to develop appropriate regulations. DOE started a long process that led them to Yucca Mountain. Without getting into the details, Yucca Mountain, by 1987 the DOE was beginning to investigate its suitability as a deep geologic repository and Congress approved it in 2002. Instead of solving the issue, though, this only seemed to serve as incentive to those opposed to the site – both inside and outside of Nevada. Both scientific studies and legal/political opposition continued until 2011, when Congress pulled the plug on Yucca Mountain. And there’s where the issue seemed to rest until just recently, when the issue came up yet again. At present it seems the issue isn’t settled after all – but who knows what will happen next year.

At the same time, all of our nuclear power plants are continuing to operate and to produce HLW. At first it was stored on-site in wet storage – immersed in water. As the spent fuel pools began to fill up the nuclear power plants got permission to re-rack their fuel (the spacing of the spent fuel rods is carefully controlled to prevent the possibility of a criticality). With pools continuing to fill up – and still no place to permanently take the waste – the NRC authorized dry cask storage – taking the spent fuel out of the swimming pool and putting it into land-based casks. And that’s where matters stand today – over 50 individual reactor sites are storing their HLW on site in a combination of dry casks and re-racked swimming pools.

All this being said, Yucca Mountain is hugely controversial. There’s not space here to go into all of the controversy – it gets into geology, transportation, groundwater and surface water, and more – but if there’s an interest I’ll try to cover some of the controversy in future postings.

Staying Safe in a Radiological or Nuclear Attack

Dear Dr. Zoomie: Last week a big nuclear terrorism exercise made the news, and I can’t help but wonder “What do I do if something like this happens for real? How do I keep myself and my family safe?”

I’ve been working on this, and related topics for some time and can say, first off, that most of our immediate instincts are wrong. If you can do the right thing – and do it quickly – even a nuclear attack can be survived. But in the case of a nuclear attack, it’s what you do in the first few minutes – before the first public service announcement – that will save your life. Or not. Anyhow – I can’t promise that following the steps listed here are guaranteed to save your life in the case of a nuclear attack. But I can tell you that following these steps will maximize your chance of survival. Oh – I’ll also point out that much of this (sheltering, for example) is simply sound advice for any major attack; not just radiological or nuclear, but also for chemical, biological, bombs, and even most cases of active shooters.

  1. Don’t try to evacuate – go into the nearest (and largest) safe building and wait until the fallout pattern can be mapped so that we know where it’s safe to go outside versus where it’s dangerously radioactive. If you’re outside and in the wrong place (the fallout plume) you will die – if you shelter in a building (as far away from the walls and roof as possible) you will survive. As soon as the plume footprint is known, the government will let us know who should continue sheltering, when it’s safe to evacuate, and the route to take that will give the lowest radiation dose. As the Brits say – Go in, Stay in, Tune in.
  2. Don’t pick your kids up from school or day care! If you are in the fallout plume then radiation levels will be dangerously high. If you go outside, you will pick up a fatal dose of radiation. If you get your kids out of school then they will also receive a fatal radiation dose. The safest thing for everybody is for all of you to shelter indoors.
  3. Prepare – not just for this, but for any big bad thing that might happen. What’s the best building for you to shelter in near work? Around your favorite hangouts? Near home? Where will you find water for the 1-3 days you might have to shelter (for example – you can drink the water in the toilet tank, fruit juice and beer will keep you hydrated, bottled water, etc.)? How about a few days’ worth of food (might finally get around to eating those canned yams!)? You can’t starve to death in a few days, and probably won’t die of thirst either – but we also want to have the strength to evacuate when the time comes.
  4. Make up a family communication and reunion plan – do you know how you’ll let your kids, spouse, etc. that you’re OK? Where will you meet up when the sheltering order is lifted? Figure this out now because an emergency is not the time to be winging it. Even if you can’t find each other right away, you can at least know that everyone is OK. And remember – you might not have to talk directly! Having everyone call in to grandparents, good family friends, etc. will also let everyone know that everyone else is OK.
  5. Radiation and pregnancy – it takes a lot more radiation to cause problems with pregnancy than most people think. Also, most physicians don’t know as much about the reproductive effects of radiation as one might think – after Chernobyl there were at least 100,000 women who had unnecessary abortions because their doctors gave them poor medical advice. Before making any decision about terminating a pregnancy – or letting a pregnancy proceed – talk with someone who can help you to figure out how much dose your baby received and whether or not it’s enough dose to cause problems. THEN you can take this information to your OB/GYN to see if the risk from the radiation – combined with other risk factors (age, alcohol and tobacco use, health problems, etc.) – is unacceptable. You can find a knowledgeable professional by contacting the Health Physics Society (hps.org) and then clicking on “Public Information” and “Ask the Experts.” Choose the “Pregnancy and Radiation” topic area.

One other thing – a lot of people might want to buy their own radiation detectors so they can find out for themselves if they’re safe. There’s no problem with this – but they need to buy a GOOD detector (not a cheap and inaccurate one) that will give accurate readings up to dangerously high levels. Some types of detectors overload at levels that are still safe – you want to avoid these. In addition, some kinds of radiation detectors are good for measuring radiation dose and others are designed to measure contamination – you can’t just use any radiation detector for all purposes. Two radiation detectors I’ve used and think highly of are the Dosime and the Ludlum Model 25. Both are solid radiation detectors that give accurate dose rate readings anywhere from normal natural radiation all the way to dangerously high levels. Both are affordable, and both are made by companies that make professional-quality radiation instruments.

Finally, learn how to use the detector, learn what normal “background” radiation levels are in your area, and use the meter every now and again to make sure it’s still operating properly and to remind yourself how to use it. Otherwise you might end up with an inoperable meter, the wrong type of meter, or one you don’t know how to use. Using the wrong instrument (or the right instrument, but improperly) can be more dangerous than performing no survey at all because it can lead to a false sense of safety. And – by the way – most “Geiger counters” are NOT the right instrument to use for something like this!

Does Weapons-Grade Uranium Pose a Health Risk When Handled?

Dear Dr. Zoomie – I was watching The Man in the High Castle and there was a bit about weapons-grade uranium posing a health risk to people around it. Is this true?

I’ve been watching this series too and I just watched that episode myself. I have to admit I was happy to see one of the “bad guys” who was concerned about the health of the public. On the other hand, I was disappointed that the writers (and researchers) got this part wrong. The short version is that uranium – even highly enriched uranium – is simply not very radioactive. I can confirm this from personal measurements – I’ve made radiation dose rate measurements on depleted uranium, natural uranium, and enriched uranium and none of them are very radioactive. Here’s why:

There are a couple of ways to approach this question. The easiest one is to do a calculation using something called a gamma constant – the gamma constant tells us the radiation dose rate from a given activity of a radionuclide at a given distance. For U-235 (the isotope of uranium used to make nuclear weapons) the gamma constant is only about 0.176 mR/hr from 1 curie of radioactivity at a distance of one meter). So now we just have to figure out how many curies of U-235 there are in a nuclear weapon.

The Little Boy nuclear weapon used highly enriched uranium – about 64 kg (141 pounds) of it. This is significantly more than what’s used in modern weapons, but it was our first one and the designers still needed to figure out some of the tricks we use today. Since the uranium in The Man in the High Castle was also intended for a country’s first nuclear weapons we’ll assume they were using this same amount of uranium. OK – this gets us a weight, but we need an activity to use the gamma constant. So a little more work is in order.

Every nuclide also has what’s called a “specific activity” – the amount of radioactivity (in curies or in the international unit of Becquerel). This is the amount of radioactivity in 1 gram of that radionuclide. For U-235 the specific activity is 91 microcuries per gram, so 1 kg will have a thousand times as much, or 91 mCi and the 64 kg in Little Boy would contain 5.8 Ci – to make the math easy, let’s call it 6 Ci.

So – if 1 Ci gives a dose rate of 0.176 mR/hr at a distance of 1 meter, 6 Ci will produce a dose rate of 0.176 x 6 = 1.056 R/hr at a distance of 1 meter. The actual dose rate from the Little Boy bomb was probably lower than this because it wasn’t 100% U-235, and the other nuclide present (U-238) has an even lower specific activity. But let’s use a dose rate of 1 R/hr at a distance of 1 meter – again, to make the math a little easier.

Now we’re to the final part – what health effects do we expect to see from this level of radiation exposure?

The lowest radiation exposure that’s been shown to cause short-term health effects is about 25 rem – this will cause your blood cell counts to drop for a few months due to damage to the blood-forming organs. It takes about 100 rem to cause radiation sickness, about 400 rem to give someone a 50% chance of death (without medical treatment), and nearly 1000 rem to be fatal. With a dose rate of 1 R/hr at a distance of 1 meter this part’s easy – it’ll take 25 hours of exposure to cause a change in blood cell counts, 400 hours to give a 50% risk of death, and 1000 hours to cause death. At a speed of 60 mph it takes about 50 hours to cross the US – not even enough time to develop radiation sickness. And that’s for a person sitting for that whole time at a distance of 1 meter from the uranium – a person in the next row (or the next seat) further away would receive only half (or less) that amount of radiation.

So – when we put all of this together it seems fairly safe to say that even a person sitting right next to all that uranium on a cross-country trip wouldn’t even get radiation sickness. Which means that The Man in the High Castle is overstating things a bit – nuclear weapons are bad when they explode, but they don’t give off dangerous levels of radiation.

Can Hospitals Refuse Patients Who’ve Been Contaminated with Radiation?

Hi, Dr. Zoomie – I’ve heard that sometimes hospitals don’t want to admit patients if they’re contaminated with radioactivity. There’s always a chance that one of my workers might need medical attention and they could be contaminated. How can we make sure that our people get the medical attention they need, even if they’re contaminated? I know it’s sort of far-fetched, but you never know.

You know, this isn’t as far-fetched as you might think. I won’t say it happens all the time, but workplace accidents happen all the time and it’s certainly not unreasonable to believe that you could end up with a contaminated injured person. One scenario that comes to mind almost happened to me a few times – a person’s carrying radioactive liquids and trips and falls down. Just falling on a level surface can hurt someone, especially if they hit their head. But a person can also fall down a stairway or brain themselves on a piece of machinery – the possibilities are endless, as we all know. In any event, you have to know that all of your injured people will get prompt medical attention, even if they’re contaminated with radioactivity.

The first thing is to call whatever hospital your people will be sent to as well as whoever will be taking them there – local EMTs, ambulance service, fire department, or whoever it is that makes these runs. All of you need to meet so that you can all talk through what needs to be done so that your people get the medical care they need with the fewest delays possible. This will probably require that you frankly discuss with the others the type and amount of radioactivity your folks might be contaminated with, the risk that it would pose, and how to work with it safely. And what you need to make sure they understand is that a contaminated patient poses little to no risk to medical caregivers – in fact, there’s virtually no plausible circumstance I can think of in which a person at an industrial, medical, or research facility can be contaminated badly enough that it would pose a risk to medical caregivers.

What the ambulance company needs to know is how to keep their drivers, medics, and ambulances from becoming contaminated; or when this contamination might be warranted. When the patient is critically injured and every minute counts, the most important thing is to try to stabilize the patient and get them to the hospital as soon as possible. We can always decontaminate an ambulance, but if a person suffers irreparable harm or if they die…these can’t be un-done. This means that we do whatever decontamination is possible – but only to the extent that it doesn’t delay any medically necessary care or attention.

If time does permit, there are some things that can be done to reduce the spread of contamination to an ambulance. Removing outer clothing will remove up to 75% of the contamination. Wrapping a person in a blanket or sheet reduces contamination even further, as does putting them in a Tyvek or disposable “bunny suit” to contain the contamination on their clothes and body. If there’s even more time, you can work on decontamination – wipe them down with a damp sponge or washcloth – but only if time permits. Something else you can do to limit the spread of contamination to an ambulance is to cover as much of the ambulance’s interior as possible. Also, remember that any nuclear medicine patient contains more radioactivity than virtually any contaminated worker, and many of them will also have a fair amount of skin contamination as well.

OK – this gets your person into the ambulance and on their way to the hospital, but you still have to persuade the hospital to let your contaminated workers into the emergency room.

As I mentioned earlier, if the patient is critically injured – if every minute counts – there is neither the time nor the need to decontaminate them prior to treating them. In this case, standard hospital precautions will suffice to keep the medical caregivers safe. So as long as they’re wearing gloves, a mask, and maybe a surgical gown – taking precautions to keep the contamination off of their skin – they should be OK. Having said that, even if they DO get some contamination on their skin it’s not the end of the world – I used to do water chemistry on nuclear reactors and I had skin contamination a number of times; every time it cleaned up with soap and water fairly quickly. I think of radioactive contamination as being like changing a diaper – I don’t want to get anything on my hands but, if I do, I just wash my hands and go on with my day. So – if their condition is critical – the patient can be taken directly to a trauma bay and worked on without posing a risk to the medical staff.

Having said that, it can take days, weeks, even months to decontaminate an emergency room and you don’t want to do that unless it’s necessary. If the hospital has a chance to prepare, there are some things that can be done to reduce contamination of their facilities. Most effective is to put down floor coverings – plastic (preferably textured to prevent slipping) or plastic-backed paper. They can also cover the examination table with plastic, and can even put a plastic covering over the lights, trays, and anything else that might come in contact with a contaminated patient. Even better is if the floor is covered with a seamless floor covering, but this obviously can’t be done on the spur of the moment.

You can see a lot of this in the photo below, which I took at the Fukushima University Medical Center a few weeks after the reactor accident – this is the same trauma bay where the two workers who had radiation burns were initially treated.

A Trauma Bay at the Fukushima University Medical Center

A Trauma Bay at the Fukushima University Medical Center

I could go into a lot more details, but space doesn’t permit. So for the purposes of this article, let it suffice to say that the risks to medical caregivers are well-known, they are very low, and can be managed. While it’s best to prevent contamination in either the hospital or the ambulance, if the patient is in urgent need of medical attention, the patient must come first. And for any medical responder, taking standard safety precautions will help to keep them from being contaminated.

So…. If you are concerned that one of your people might be contaminated with radioactivity AND might need medical attention you need to work out the details with both your local hospital(s) and whoever will be transporting the patient to the hospital. Make sure that they understand the (lack of) risks a patient might pose them and, between you, come to an agreement as to what everyone needs to do in order to ensure your people get the medical care they need, without undue delay if their condition is critical. And the time to do this is now – before one of your people is hurt.

Are Radiation Levels at Fukushima High?

Dear Dr. Zoomie – I heard that radiation levels have gone sky-high at Fukushima. What gives? Do we need to worry that it’s still melting down or giving worse? Should I avoid the Pacific Ocean and the West Coast? Help!

Yeah…this was pretty interesting. And of course the question is why the radiation levels went up and what that means. But first, let’s talk a little bit about the radiation level that the story talks about.

No way around the fact that 530 Sieverts per hour (Sv/hr) is a whopping radiation dose rate. A dose rate of 10 Sv (1000 rem) is lethal 100% of the time, so this dose rate would give you a fatal dose of radiation in about a minute. So – yes – this is a serious dose rate. And let’s face it, if even a robot can only handle it for a few hours then we know it’s a high dose rate! For what it’s worth, I’ve been involved in radiation safety for 35 years and this is far and away the highest dose rate I’ve ever heard of. So there is no doubt that the dose rate reported is serious. The question we have to ask is whether this is a new dose rate (that is, did something change within the core to cause dose rates to go up) or was it like this all along and it was just found.

The Fukushima I Nuclear Power Plant after the 2011 Tōhoku earthquake and tsunami. Reactor 1 to 4 from right to left.

The Fukushima I Nuclear Power Plant after the 2011 Tōhoku earthquake and tsunami. Reactor 1 to 4 from right to left.

If this dose rate represents a change in core conditions then there might be cause for concern – it could indicate that something’s changed. For example, maybe some of the fuel dropped down to a new location. If it’s the latter then it could indicate that conditions might still be unstable. There are those who have speculated that perhaps the melted fuel has somehow achieved criticality again – this is highly unlikely. The reason is that it takes a great deal of engineering to achieve criticality in a nuclear reactor; the possibility that the melted fuel somehow rearranged itself to become critical is vanishingly unlikely.

It is possible that the components of the wrecked core have shifted and, in the rearrangement, a high-dose rate piece (or pieces) ended up near the instruments. This is more likely than a criticality, but given some other facts (I’ll get to these in a moment) this is also less likely than are other possibilities.

The key piece of information in this story was that TEPCO was pushing radiation instruments into a part of the plant that hadn’t been investigated before. As their instrument-bearing robot pushed into new territory it encountered new conditions – including parts of the ruined core. So it’s almost certain that the increased radiation levels are due to moving the instruments into new – and far more radioactive – territory. Think of moving your hand over a candle flame – as it passes over the flame you feel your hand heat up. This isn’t because someone just lit a candle – it’s because you moved your hand into the hot air above the candle that was already burning.

Interestingly, the robot took a number of photos as it was making its rounds, giving us an idea of what the core and reactor vessel now look like. Needless to say, it’s a mess – but that’s to be expected. There are lumps of what we can speculate are solidified fuel, a place that looks as though molten fuel melted its way through the floor grating, and so forth. It’s evident even to an untrained eye that there’s been a lot of damage – unfortunately, without knowing what the plant looked like before the accident (and being unfamiliar with this particular reactor plant design) it’s hard to know if anything non-obvious has changed.

The bottom line is that, while the newly reported radiation levels are dangerously high they probably don’t represent any changes in the conditions at the Fukushima reactors – much more likely is that they represent the first push into an area that has had extraordinarily high radiation levels every since the accident. So you don’t need to avoid the Pacific Ocean!